中国科技核心期刊

中文核心期刊

CSCD来源期刊

空间控制技术与应用 ›› 2023, Vol. 49 ›› Issue (6): 58-67.doi: 10.3969/j.issn.1674 1579.2023.06.006

• 论文与报告 • 上一篇    下一篇

基于深度学习的动态环境视觉里程计研究

  

  1. 河南理工大学电气工程与自动化学院
  • 出版日期:2023-12-25 发布日期:2024-01-02
  • 基金资助:
    国家自然科学基金联合基金项目(U1804147)

Visual Odometry of Dynamic Environment Based on Deep Learning

  • Online:2023-12-25 Published:2024-01-02

摘要: 本文提出了一种基于深度学习的动态场景视觉里程计方法。使用轻量级Ghost模块与目标检测网络YOLOv5s结合构建C3Ghost模块,引入坐标注意力机制(coordinate attention, CA),在提高网络检测速度的同时保证检测准确性。并将其与运动一致性算法结合,剔除动态特征点,仅利用静态特征点进行位姿估计。实验结果表明,与传统的ORB SLAM3(orient FAST and rotated BRIEF simultaneous localization and mapping 3)算法相比,在慕尼黑工业大学(technical university of Munich,TUM)RGB-D(RGB depth)高动态数据集上绝对轨迹误差(absolute trajectory error,ATE)和相对位姿误差(relative pose error,RPE)平均有了90%以上的改善。相较于先进的同时定位与地图构建SLAM算法,也有相对提升。因此,该算法有效提升了视觉SLAM在动态环境下的稳定性和鲁棒性。

关键词: 视觉里程计, 目标检测, 注意力机制, 轻量级, 运动一致性

Abstract: This paper proposes a dynamic scene visual odometry method based on deep learning. The C3Ghost module is built using the lightweight Ghost module combined with the target detection network YOLOv5s, and the CA (coordinate attention mechanism) is introduced to improve the network detection speed while ensuring detection accuracy. It is combined with the motion consistency algorithm to eliminate dynamic feature points and only use static feature points for pose estimation. Experimental results show that compared with the traditional ORB SLAM3 (orient FAST and rotated BRIEF simultaneous localization and mapping 3) algorithm, the ATE (absolute trajectory error) and RPE (relative pose error) on the TUM (technical university of Munich) RGB-D (RGB depth) high dynamic data set has improved by more than 90% on average. Compared with the advanced SLAM algorithm, it is also relatively improved. Therefore, this algorithm effectively improves the stability and robustness of visual SLAM in dynamic environments.

Key words: visual odometry, object detection, attention mechanism, lightweight, motion consistency

中图分类号: 

  • V412.4